Geometry: Examples 4

1. Fix a compact abstract surface Σ. In lectures we defined the Euler characteristic of a triangulation of Σ, but one can make the same definition for an arbitrary polygonal decomposition, defined in the same way as a triangulation but with arbitrary polygons in place of triangles.
(a) Given a polygonal decomposition, show that there exists a triangulation with the same Euler characteristic.
(b) Consider a polygonal decomposition of Σ such that at least three edges meet at each vertex and each face has at least three edges. Let F_{n} denote the number of faces with exactly n edges, and V_{m} the number of vertices at which exactly m edges meet. Show that

$$
\sum_{n} n F_{n}=2 E=\sum_{m} m V_{m} .
$$

Deduce that if $V_{3}=0$ then $E \geq 2 V$, whilst if $F_{3}=0$ then $E \geq 2 F$. Conclude that if $\Sigma=S^{2}$ then $V_{3}+F_{3}>0$.
(c) The surface of a football is decomposed into hexagons and pentagons, with precisely 3 faces meeting at each vertex. How many pentagons are there?
2. Show that if the surfaces $\Sigma_{g_{1}}$ and $\Sigma_{g_{2}}$ of genus g_{1} and g_{2} are diffeomorphic then $g_{1}=g_{2}$. You may assume that every smooth surface admits a Riemannian metric.
3. Let z_{1}, z_{2} be distinct points in the hyperbolic plane, working in either the disc model or the upper half-plane model. Suppose the hyperbolic line through z_{1} and z_{2} meets the boundary at points w_{1} and w_{2}, where z_{1} lies between w_{1} and z_{2}. Show that the hyperbolic distance $d\left(z_{1}, z_{2}\right)$ is equal to $\log r$, where r is the cross-ratio of the four points $z_{1}, z_{2}, w_{1}, w_{2}$ taken in an appropriate order.
4. Given a Riemannian surface (Σ, g), with associated distance function

$$
d(p, q)=\inf \{\operatorname{Length}(\gamma): \gamma \text { a smooth path from } p \text { to } q\},
$$

the circle of centre p and radius r, denoted $C(p, r)$, is the set $\{x \in \Sigma: d(x, p)=r\}$.
(a) For the sphere $\left(S^{2}, g_{\text {round }}\right)$, and for $r \in(0, \pi)$, show that each circle $C(p, r)$ has circumference $2 \pi \sin r$ and bounds a disc of area $2 \pi(1-\cos r)$.
(b) For the Poincaré disc model $\left(D, g_{D}\right)$, and $r \in(0, \infty)$, show that each circle $C(p, r)$ is a Euclidean circle and that with respect to g_{D} it has circumference $2 \pi \sinh r$ bounds a disc of area $2 \pi(\cosh r-1)$.
(c) Show that no hyperbolic triangle contains a half-disc of (hyperbolic) radius $\geq \operatorname{arcosh} 2$. Deduce that there exists $\delta>0$ such that in any hyperbolic triangle the union of the δ-neighbourhoods of two of the sides completely contains the third side.
5. Show that two hyperbolic lines have a common perpendicular if and only if they are ultraparallel. In this case use the Gauss-Bonnet theorem to show that the common perpendicular is unique.
6. (a) Show that the geodesic 2-gon on S^{2} bounded by two great circles meeting at angle α has area 2α. Deduce the Gauss-Bonnet theorem for spherical triangles (i.e. geodesic triangles on S^{2}).
(b) Show that the integral of $\frac{\mathrm{d} x}{y}$ along a geodesic in the upper half-plane model is equal to the angle through which the geodesic turns relative to the vertical. By applying Green's theorem, deduce the Gauss-Bonnet theorem for hyperbolic polygons.
7. (a) Let φ be an orientation-preserving isometry of the hyperbolic plane not equal to the identity. Show that φ is elliptic iff in the disc model it's conjugate to a rotation. Show that φ is parabolic or hyperbolic iff in the upper half-plane model it's conjugate to $z \mapsto z \pm 1$ or a map of the form $z \mapsto a z$ for $a \in(1, \infty)$ respectively.
(b) Show that the map T from the Möbius group to \mathbb{C} given by

$$
T:\left(z \mapsto \frac{a z+b}{c z+d}\right) \mapsto \frac{(a+d)^{2}}{a d-b c}
$$

is well-defined and conjugation-invariant.
(c) Show that if a non-identity Möbius map φ sends the half-plane or disc to itself then $T(\varphi)$ is real, and that φ is elliptic, parabolic, or hyperbolic iff $T(\varphi)$ is $<4,=4$, or >4 respectively.
8. Equip the cylinder with the complete hyperbolic metric obtained by quotienting the upper half-plane by the group generated by $z \mapsto a z$ for $a \in(1, \infty)$. Show that this contains a unique closed geodesic, and find its length. Draw a diagram of the cylinder showing a selection of geodesics.
9. Construct a compact hyperbolic surface Σ, and disjoint simple closed geodesics $\gamma_{i} \subset \Sigma$, for which $\gamma_{1} \sqcup \gamma_{2}$ bounds a subsurface Σ^{\prime} of Σ homeomorphic to the complement of two disjoint discs in a torus. (Here simple means that each geodesic does not cross itself; formally, its image is homeomorphic to S^{1}.) Can this happen if Σ has genus two?

